Identification of Computational and Experimental Reduced-Order Models
ثبت نشده
چکیده
منابع مشابه
System identification of a beam with frictional contact
The nonlinear system becomes an area with numerous investigations over the past decades. The conventional modal analysis could not be applied on nonlinear continuous system which makes it impossible to construct the reduced order models and obtain system response based on limited number of measurement points. Nonlinear normal modes provide a useful tool for extending modal analysis to nonlinea...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملExtension Ability of Reduced Order Model of Unsteady Incompressible Flows Using a Combination of POD and Fourier Modes
In this article, an improved reduced order modelling approach, based on the proper orthogonal decomposition (POD) method, is presented. After projecting the governing equations of flow dynamics along the POD modes, a dynamical system was obtained. Normally, the classical reduced order models do not predict accurate time variations of flow variables due to some reasons. The response of the dynam...
متن کاملProcess Improvement of Experimental Measurements Using D-optimal Models
In this paper, the application of D-optimal models, as an alternative to response surface models (RS models) for design of experiment (DOE) was examined. Two D-optimal models for tilt-rotors in the wind tunnel experiment, as a form of quadratic functions, were generated based on a chosen optimality criterion. This optimality criterion was used to generate the optimized sampled points in the des...
متن کاملFlow Variables Prediction Using Experimental, Computational Fluid Dynamic and Artificial Neural Network Models in a Sharp Bend
Bend existence induces changes in the flow pattern, velocity profiles and water surface. In the present study, based on experimental data, first three-dimensional computational fluid dynamic (CFD) model is simulated by using Fluent two-phase (water + air) as the free surface and the volume of fluid method, to predict the two significant variables (velocity and channel bed pressure) in 90º sharp...
متن کامل